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l. INTRODUCTION

We characterize best uniform approximations by finite-dimensional sub-
spaces of continuous functions from a compact Hausdorff space to a nor-
med linear space. In the characterization we reveal uscfulness of a minimax
thcorem presented in this paper.

We first prove this minimax theorem in general setup, deduce several
corollaries from it, and show that it includes a classical minimax theorem
given in [3]. Then we use the corollarics to derive necessary and sufficient
conditions for best uniform approximations. Finally, we state the Haar
condition in our framework. discuss the uniqueness of best approximations,
and then relate our results to those obtained in Chebyshev approximation
by real or complex polynomials [1,2,5,6].

Such a derivation seems ncw. We hope that our minimax thecorem can be
applied to other areas of approximation theory.

2. BEST UNIFORM APPROXIMATION

Let X be a compact Hausdorff space and Y a normed linear space with
norm | - |'. Let C(X, Y} denotc the set of all continuous functions from X
to Y. Let 4 be an n-dimensional subspace of C(X, Y) and Fe C(X, Y). An
clement f*e A is called a best (uniform) approximation to F if f*
minimizes over A

s

max | /(x) - F(x)
vioo X
1
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that 1s, if

max I /*(x) = Flx)| < max I/ (x)— F(x) (2.1)

holds for all fe A.

We are concerned with necessary and sufficient conditions and uni-
queness of best approximations. These reflect various properties of best
uniform (Chebyshev) approximation by real or complex polynomials
[1. Chap. 3; 2, Chap. 7].

As is indicated by (2.1), f* attains the minimax value of || f(x)— F(x).
Therefore, this /* and its corresponding counterpart constitute a saddle
point {see (3.1)). From this consideration we can expect to characterize f*
via a minimax theorem. In view of the first part of Section 3, however,
classical minimax theorems require the convexity (in /) and the concavity
(in x) of || f(x)— F(x)!|] and other conditions. These are too stringent to
apply to the above problem. Hence, we need a minimax theorem which is
applicable to approximation theory. This is the subject of the next section.

3. THE MiINIMAX THEOREM

Let U and V be nonempty compact convex subsets of two Hausdorfl
topological vector spaces. Suppose that a function J: Ux V' — R is such
that for each ve V., J(-. v} 1s lower semi-continous and convex on U, and
for each ue U, J(u, ) is upper semi-continuous and concave on V. Then, as
is well known [3], there exists a saddle point (u*, v*)e U x V such that

Jak, oy < J(u*, o*) < J(u, v*), ucl,vel, (3.1)
that s,

min max J(u, v) = max min J(u, v).

ueli rel vrel uel/
However, if the set }" is not convex. or if for some we U, J(u.-) is not a con-
cave function on V, the relation (3.1) does not hold in general.

We present here a generalized minimax theorem that holds even under
these conditions.

Let U be a nonempty compact convex subset of a Hausdorff topological
vector space, and let V' be an arbitrary nonempty set. Suppose that
J: Ux V — R is such that for each ve V, J(-, v) is a lower semi-continuous
and convex function on U. For each positive integer s, define the set

Vn - {(/'nﬂ 5,1)' }‘u = (’t] EREEE) /:»,,)a v, = (DI LERERY U,, ), Z /:, = 1. A,? 0,

v,eVii=1..., n)}
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THEOREM 3.1.  Under the above assumpltions,

min sup J(u, v)= lim  sup min Z A Ju, v,

we "o X we ll i=

rel’ (Anln) € Fa

Proof. Put

¢=lim sup min Y AJ(u v,)

ne s Gaepe By e

and, for each n,

"
we !

¢,= sup mmZ/Jul)

(Zarn)e Fy

Obviously, the sequence {c,}/ , is monotone nondecreasing and
c¢=1lim, , , ¢,. For each ve V, define the set

S,={ueU|J(u, v)<c}.

Since J(-, v} is lower semi-continuous and convex, it is easy to see that S, is
a compact convex set. If we can prove that for any finite set {v,,.. v, ]
of V,

k
NS, #2. (3.2)

;=1

then. using the fact that U is a compact set, we conclude that

(1 S.#J.

rel’

Then there is u*e(),., S,, which means that J(u* v)<c¢ for all veV.
Hence

sup J(u*, v) <. (3.3)
rel’
On the other hand, it follows from the well-known relation infsup
J = sup inf J that

n

¢, < inf  sup Y AJ(u, ;)= inf sup J(u, v).

el fee Py i we l' o
Therefore, we have

¢ < inf sup J(u, v)

ue '
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by ¢c=1lim, ., ¢,. From this and (3.3), we get

sup J(u*, v)=min sup J(u. v)=c.

we L

vel [

This is the desired result. Therefore, it suffices to prove (3.2). Consider the
system of convex inequalities

Jlu, )y <e J=l.. A (34)

We show that there exists a u satisfying (3.4). Let (y,...., jt,) be an arbitrary
set of nonnegative real numbers with 3% | ;= I. Define the function /by

A
Sy =" wJu ).
1

!

By the definition of ¢,, it follows that there exists a we U satisfying
flu)< ¢y, hence f{i) < ¢. Since (p...., i, ) 1s arbitrary, we conclude that the
system (3.4) is consistent on U (sec [4. Theorem 1]}, i.c., there exists ue U
such that J(u v;)<c¢. j=1.., k. This is equivalent to the relation (3.2).
Hence the proof is complete.

In the case ¥ is a convex subset of another Hausdorff topological vector
space, we get the well-known minimax thecorem mentioned above.

COROLLARY 3.1, Suppose that the assumptions of Theorem 3.1 are
fulfilled. Furthermore, assume that V' is a convex subset of another Hausdorff
topological vector space and J{u, -} is a concave function of v for each ue U.
Then

min sup J{u. v)=sup min J(u, v).
we U0 poogoue
Proof.  For each n we have
s N

sup mmZ/Juz) sup mml( 7/1)

e U () e by, t

(2pty)e b

since J(u, -) is concave, and the right-hand side is equal to

sup min J(u, ).

v el
by convexity of V. Theorem 3.1 implies

min sup J(u, v) < sup min J(u. r).

we U vl [T BT

Since the reverse inequality always holds, the corollary follows.
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If U is finite dimensional, Theorem 3.1 takes on the following simple
form.

CoORrROLLARY 3.2, In Theorem 3.1, if U is an n-dimensional compact con-
vex subset of a Hausdorff topological vector space,

m+ 1
minsup J(u, v)= sup min Y A.J(u v,

wel et (Gave ly yuell [

Proof. Let ¢ be the value in the right-hand side and define the sets S, as
in the proof of Theorem 3.1. In order to prove (), S, # &, we can apply
Helly’s theorem [1], since U is finite dimensional. That is, it suffices only
to prove

n+ 1

NS #@

i—1

for any n+ 1 elements v,,.., ¢, ,, of V. However, this part of the proof is
the same as that of Theorem 3.1, hence we omit it.

In the next corollary we assume that the set V" has a topology for which
the function J is jointly continuous.

COROLLARY 3.3. Let U be an n-dimensional, compact convex subset of a
Hausdorff ropological vector space (nz 1), V a compact Hausdorff space.
Let J: Ux V= R be a jointly continuous function. Then, u* e U minimizes

max,_, J(u., v) over U if and only if there exists (A1¥,,, %, ,)eV,,, such
that

n+1 n o+l n+ i

oAt v)< Y ARt oF) < Y AR (u, oF) (3.5)

i=1 =1 f=1

holds for all (7, ., 0,,,)eV,,  and for all ue U.

"+

Proof. First note that the function

n+ 1

mmZ//uv)

ue

is continuous with respect to 4,,..., A, , i Uy Uy, 1, and that the set 7, |
is compact. Hence there exists (4%, ,, ©0F, )=(%,... 4%,
vk, v¥, )eV, ., such that

n+1 n+1
max min Z 4. J(u, v;) = min Z AT (u, v¥).

(Zuw - tans 1VEF, 1 uels ue UV
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By hypothesis, u* satisfies
nl

min max J(u, v) = max J(u*, v)= max Y A, vy

uell vel ve (Ap s W= 10E Vg P

These two relations and the preceding corollary imply (3.5). Conversely,
(3.5) together with Corollary 3.2 implies

min max J(u, v)

nell vel’

n+l

= max min Y 4J(u )
Cpitony VeV, uel! Q=1
it
= max Y A JuF ) =max J(u*, o).
[P I S ol R i we UV

i

Therefore u* minimizes max, , J(u, v). This completes the proof.

4. NECESSARY AND SUFFICIENT CONDITIONS

We continue to adopt the notation employed in Section 2. For
e C(X, Y), we define the uniform norm of f by

17 = max | fix) ],

and endow the linear space (X, Y) with the uniform topology.

It is easy to see that || /(x)— F(x)]| is a jointly continuous function of the
two variables /, x and convex in f; i.c.,

[(0f + (1 —0) g)x)— F)| <0 f(x)— F(x)[| + (1= 0)] glx)— F(x)|
for all f, ge C(X,Y), xeX, and 6, 0<0< 1. Hence, il AcC(X, Y)is a

finite-dimensional subspace, we can apply Corollary 3.3 and obtain the
following necessary and sufficient condition of best approximation.

THEOREM 4.1. Let A be an n-dimensional subspace of C(X, Y) and
FeC(X, Y). Then f* e A is a best uniform approximation to F if und only if
there exist A.*,.., Af >0, Y% | A¥ =1, and k distinct elements x¥,..., x¥ of X,
where | <k <n+ 1, satisfying

1) /) =FxRi=li/*=FlI.  i=lL.k

(i) X AFISGX) = FxeI =20 AF 1 f*(xF) = Fix¥)ll for  all
fe A
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Proof. Let f* 'be a best approximation and let U=

{fe Al m f'* S <1} It is evident that f* minimizes max,
H f(x)— F(x)| over U, and U is a compact subset of 4 because it is boun-
ded and closed in a finite-dimensional space 4. Applymg Corollary33
yields the existence of 4,...4,,, =20, >0+ i/ =1, and {x},.,x,, X
such that the following two relations hold:

n+1 n+ 1

AR = Fxpli = ), A L) = Flx)) (4.1)

fel /=1

{(;'/1—§ 1 '\in{ 1)’)'n+ 1 :(/{'Iﬂ"" /:“)1+ l)’ i‘n& 1=

for all (’{/Hl’ n+l) A_/ =
A= /',,20, xeX(i=1l.,n+1)};

(-Y] e Xy 1)’ z”+ H

n+ nrl
Y AL = Fpl = Y, AL — F(x)| (4.2)

i=1 [N

for all feU. Let us denote by A*... A% the nonzero elements within
Alses Ay and by x ¥ xF the corresponding elements within x|,..., x;,, |
of X. The assertion (i) follows from (4.1) which means, for i=1,..., k,

1/ *0x ) = k) = max {| f*0e) = Foll = I/~ = Fii.

On the other hand, it follows from (4.2) that

A k
AR NSF) = Fx®) = Y AF 1 f*(xF) = FxF)

i=1 Foel

holds for all fe U. Since the left-hand side i1s a convex function of f and has
a local minimum at f*, f* realizes a global minimum by a property of con-
vex functions. Thus (ii) follows. Conversely, suppose that (i) and (ii) hold.
These two conditions yield

sup inf ZA I/ (%) — F(x)|

(Aekre Xi fe A

>Z/*H/ xF)— F(x¥)| =l f*=FJ.

i=1

where X, is similarly defined as the set X The left-hand side of the last

relation is equal to or less than

nil-

k

inf max Y A f(x))— Flx,)| :/inf max || f(x)— F(x)I|.

1€ A (i p)e Xy P

Therefore /* is a best approximation. The proof is completed.
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If ¥ is a Hilbert space with inner product (., ). then condition (ii) of
Theorem 4.1 can be replaced by another form.

COROLLARY 4.1, f*e A is a hest uniform approximation to F if and only
it there exist AfL A *¥>0, XE  2F=1. and k distinet elements
NELLxFe X where | <k <n+ L, satisfving condition (1) of Theorem 4.1 and

k

(111) YOAFSHxF) - F(xF) p(xX)) =0 forallpe A.

i1

Proof.  Condition (ii) of Theorem 4.1 holds if and only if the following
inequality holds for all pe 4 and all real numbers

A A
YAFCRE Hap(F) = PR 2 ) AF SR = )] (4.3)

i [

This means that the left-hand side is a convex function of 1 and has a
global minimum at (= 0. By diffcrentiating it with respect to ¢ at r=0, it
follows that (iii) is a necessary and sufficient condition for (4.3) to hold for
all pe 4 and 1. For we have, for v, -€ Y and real 1,

I o 2o A A I AU Y O

Iim = lim —

P / peot(l vzl + Tyl
{vezy

=T if v #0.
iy

This completes the proof.
The next corollary states that /* is a best approximation on X if and
only if it also is on some finite set of X.

COROLLARY 4.2, Let A be an n-dimensional subspace of C(X, Y) and
FeC(X, Y). Then {* is a best uniform approximation to F if and only if
there exist elements ¥, 2Fe X, where 1 <I<n+ 1, for which [* satisfies

) W =R =1 =Fi =Lk

(i) max || f(zF)— FzF)| = max | /*(zF)— F(zF)| for all fe A.
Pagd [

Proof.  The proof is an easy application of Theorem 4.1, hence we omit
it.

As an example of applications of the above resuits, we take C(X, Y) to
be complex-valued continuous functions on a compact subset of the com-
plex plane. Let us take the subspace 4 to be the set of all complex
polynomials of degrees at most #. It is ¢asy to see that Corollary 4.1 implies



APPROXIMATION AND MINIMAX THEOREM 9

Characterization Theorem [ 1, Chap. 3] and that Corollary 4.2 corresponds
to Theorem C (Skeleton Theorem) of [6].

5. THE HAAR CONDITION

In this section we introduce a condition under which the numbers &, /
appearing in Theorem 4.1 and its corollaries arc equal to exactly #+ 1. The
n-dimensional subspace 4 < C(X, Y) is said to be a Haar subspace if for
any n distinct elements {x,..., .\, X and for any | v,,..v,} <Y, there
exists a unique fe€ A such that f(x )=y, i=1.. n. When C{X,Y) is
Cla, b]. this is equivalent to saying that A satisfies the Haar condition [5,
p.917].

THEOREM 5.1, Let X be a compact Hausdorff space that contains more
than n points and A an n-dimensional Haar subspace of C(X, Y). Let
FeC(X, Y) with F¢& A [*e€ A is a best uniform approximation to F if and

only if there exist 2F,..0 2% >0, 37 P ix=1, and n+ 1 distinct elements
N e X osatisfying
(1) |/ r (=Ml =F i=laan+:
nil

(i) Z FELSE - FO 2 Y 8 |5 B

7

for all fe A,

or it and only if there exist n—+ 1 distinet elements x *....x¥ € X satisfving
(1) und

(1) max | f(x¥)— F(xF) = max | fHNF) — Fx k)l

Leod=m+t | ]‘I'/I‘I

Jfor all fe A. Furthermore, if the normed linear space Y is strictly convex,
there exists a unique best approximation.

Proof. Il the numbers A or / in Theorem 4.1 or Corollary 4.2 uare less
than # + 1. we can choose an fe A such that

fix¥)=F(x*)i=1.. k. k<n), or [fCX)=FX)j=1..,LI<n)

It follows from (i1) of Theorem 4.1 that

A I3
0= XISy —FxF) =Y A5 Xk —Flxr)
i 1

i
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and from (11"} of Corollary 4.2 that

0= max |[ /(z¥) = FzF) = max | f*(=F)~ F(=})].
ey L juif

The right-hand sides of these inequalities are equal to || /* — F|| > 0, since
F¢ A. This is a contradiction. Hence we have k =/=n+ 1. Along the same
argument of [2, p. 143], the uniqueness follows from the definitions of
strict convexity [2, p. 141; or 5, p. 106] and Haar subspaces. This com-
pletes the proof.
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