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I, I"JTRO[)l)CTION

We characterize best uniform approximations by finite-dimensional sub
spaces of continuous functions from a compact Hausdorff space to a nor
med linear space, In the characterization we reveal usefulness of a minimax
theorem presented in this paper,

We first prove this minimax theorem in general setup, deduce several
corollaries from it, and show that it includes a classical minimax theorem
given in [3} Then we use the corollaries to derive necessary and sufficient
conditions for best uniform approximations, Finally, we state the Haar
condition in our framework, discuss the uniqueness of best approximations,
and then relate our results to those obtained in Chebyshev approximation
by real or complex polynomials [1, 2, 5, 6}

Such a derivation seems new, We hope that our minimax theorem can be
applied to other areas of approximation theory,

L BEST UNIFORM ApPROXI\lAnON

Let X be a compact Hausdorff space and Y a normed linear space with
norm II' ,Let C(X, Y) denote the set of all continuous functions from X
to Y. Let A be an n-dimensional subspace of C(X, Y) and FE C(X, Y), An
clement f* E A is called a best (uniform) approximation to F if f*
minimizes over A

max !I f(x) - F(x)ll,
i- .\
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that is, if
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max II f*(x) ~ F(x)11 :( max II fIx) ~ F(x)11
\" Fe .\ Y"::- ,t

(2.1 )

holds for all fE A.
We are concerned with necessary and sufficient conditions and uni

queness of best approximations. These reflect various properties of best
uniform (Chebyshev) approximation by real or complex polynomials
[L Chap. 3; 2, Chap. 7].

As is indicated by (2.1),/* attains the minimax value of Ilf(x)~F(x)il.

Therefore, this f* and its corresponding counterpart constitute a saddle
point (see (3.1 )). From this consideration we can expect to characterizef*
via a minimax theorem. In view of the first part of Section 3, however,
classical minimax theorems require the convexity (in f) and the concavity
(in x) of II fIx) ~ F(x)!1 and other conditions. These are too stringent to
apply to the above problem. Hence, we need a minimax theorem which is
applicable to approximation theory. This is the subject of the next section.

3. THE MINIMAX THEOREM

Let U and J' be nonempty compact convex subsets of two Hausdorff
topological vector spaces. Suppose that a function 1: U x V -> R is such
that for each v E V, J(', t') is lower semi-continous and convex on U, and
for each U E U, J(u, .) is upper semi-continuous and concave on V. Then, as
is well known [3]. there exists a saddle point (u*, 1'*) E U X V such that

that is,

J(u*, r):(J(u*, v*):(J(u, v*), UE U, V E V, (3.1 )

min max J(u, v) = max min J(u, v).
U E U {' E' V l' E:' VUE U

However. if the set V is not convex, or if for some u E U, J( u,·) is not a con
cave function on V, the relation (3.1) does not hold in general.

We present here a generalized minimax theorem that holds even under
these conditions.

Let U be a nonempty compact convex subset of a Hausdorff topological
vector space, and let V be an arbitrary nonempty set. Suppose that
J: U x V -> R is such that for each v E V, J(', v) is a lower semi-continuous
and convex function on U. For each positive integer n, define the set

f n

Vn=l(;~n,vn)IXn=(AI' ... ,/.n), t\=(vl, ...,vn),I ;,,=I,Ai~O,
I I

ViE V(i= 1,... , n)}.
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THEOREM 3.1. Under the above assumptions,

3

min sup J(u, v) = lim
It E l' I." E J C fI ,~y.

Prool Put

II

sup mm I )'1 J(u, vJ
(;~Il.rll J E V/1 U C li i = 1

II

C = lim sup mill I i,J( u, v,)
n -j. -f. ///I-'"II)E VII liE:' [i j I

and, for each 11,

II

('II = sup mm I l,J(u, vJ
(;~n,l'n I E-' FI1 II E l,' i 1

Obviously, the sequence {('/I} I:~ 1 IS monotone nondecreasing and
(' = lim

ll
~ f CII" For each v E V, define the set

51! = {u E U If( u, v) :( c }.

Since f(', v) is lower semi-continuous and convex, it is easy to see that 5, is
a compact convex set. If we can prove that for any finite set {v I , ... , V k :

of V,

kn 5 ,,#0,
l~ 1

then. using the fact that U is a compact set, we conclude that

(3.2 )

Then there is u* E n'E v 5" which means that f(u*, v):( c for all v E V.
Hence

sup J(u*, v):( c.
I'e t

(3.3 )

On the other hand, it follows from the well-known relation inf sup
f ~ sup inf f that

II

cll :( ui~; sup _ I i,J(u, vil = inf sup flu, v).
(.I: II .1',,)E J"11 i=-- 1 liE:: C I"E J

Therefore, we have

(':( inf sup flu. v)
U E t,: I't: r'
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by c = limn. / Cn" From this and (3.3). we get

sup l(u*. 1') = min sup l(u. 1') = c.
I' C I Ii { 1· ( [

This is the desired result. Therefore. it suffices to prove (3.2). Consider the
system of convex inequalities

l(u. 1'/):-::; c, i= I"... k. (3.4 )

We show that there exists a u satisfying (3.4). Let (Pl •...• pd be an arbitrary
set of nonnegative real numbers with L~ I III = I. Define the function f by

I,

f(u) = I pJ(u. 1'/).

/ I

By the definition of c". it follows that there exists a Ii E U satisfying
fUi):-::; c" hence fUi):-::; c. Since (Ill •...• II,,) is arbitrary. we conclude that the
system (3.4) is consistent on U (see L4. Theorem 1]), i.e .. there exists Ii E C
such that lUi. 1',):-::; C. j= 1•.... k. This is equivalent to the relation (3.2).

Hence the proof is complete.
In the case V is a convex subset of another Hausdorff topological vector

space, we get thc well-known minimax thcorem mentioned above.

COROLLAR Y 3.1. Suppose {ha{ {he as.IUlllpt i01/.1 0/ Theorem 3. 1 are
fidfWed. Furthermore. assume (hat 1/ is a conl'ex suhset 0/ another Hausdorff
topological rector space and 1(u. . ) is a concal'e jimc{ ion 0/1' Fir each u E U.
Then

min Slip .f(u. 1") = Slip min 1(u, l').
/I ( I" r 1- I 1/ (

Proot: For each n we have

sup min I i.J(u. l";l:-::; su)p", I',. ~i~.1 (,u. I
I

iiI',)
)c '-" If l 1 ' . '

since l(u• . ) is concave. and the right-hand side is equal to

Slip min 1( u. I').
1"1. I IIf (

by convexity of V. Theorem 3.1 implies

min sup 1(u, 1'):-::; sup min 1(u. 1').
/I l I" I 1 I 1/ l

Since the reverse ineq lIality always holds. the corollary follows.
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If U IS finite dimensional, Theorem 3.1 takes on the following simple
form.

COROLLARY 3.2. In Theorem 3.1, it U is an n-dimensional compact con
vex suhset of a Hausdorff topological vector space,

min sup J(u, c) = sup
II E {" I" E= t (,/,1' I E ('I

11+1

min I i,1(u.1'J
I liE C' i = I

Proot: Let c be the value in the right-hand side and define the sets 5, as
in the proof of Theorem 3.1. In order to prove n"E r 5, # 0. we can apply
Helly's theorem [1], since U is finite dimensional. That is, it suffices only
to prove

1/+1n 5,,# 0
i- I

for any n + 1 elements 1'1 •.... L',,~. 1 of V. However. this part of the proof is
the same as that of Theorem 3.1, hence we omit it.

In the next corollary we assume that the set V has a topology for which
the function J is jointly continuous.

COROLLARY 3.3. Let U he an n-dimensional, compact convex suhset of a
HausdorfT topological vector space (n? I), V a compact Hausdorfl space.
Let 1: U x V -> R he a jointlv continuous function. Then, u* EO' U minimizes

max'e I J(u. L:) over U if and only If there exists (J~, l' iJ~ + I) EO' V" I 1 such
that

11+ I /I +- I n-t 1

I ;",1(U*.1',)~ I ;.;J(u*, vn::::; I ;.'!'J(u. vn (3.5)
i= I i= I i= 1

holds jill' all (;~" + J. D" + 1 ) EO' V" + I and fiJi' all u EO' U.

Proot: First note that the function

11+1

min I ;.,1(11, Vi)
uc {, i = 1

is continuous with respect to ;'1 , ... , ;,,, + 1 ; VI"'" V" + J' and that the set V" + 1

is compact. Hence there exists (;~~+ 1. v~+ 1) = (Xl' ...., )"~+ 1,

Cr,···. v~ 11)E V,,+ I such that

n+ I n+ I

max _ min I ;",1(u, Vi) = min I )';J(u, vn.
Un . I· 1"/] + I l EO r/I . 1 11 E r: i = 1 U E C' i = 1
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By hypothesis, u* satisfies
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fl + I

minmaxJ(u,v)=maxJ(u*,v)= max I ),J(u*,vJ
uElJ {'EV rEV (/'111),1'/1 l)EV'111 i I

These two relations and the preceding corollary imply (3.5). Conversely,
(3.5) together with Corollary 3.2 implies

min max J(u, v)
11 F l .. c t'

/I + 1

max min I ).J(u, v,)
(/'1 t 1. / "/1 t II F r'lI . 1 II F t,' i I

max
(;~II t 1,1"/1 I) C , /I

I/t-I

I ).J(u*, 1',) = max J(u*. 1').
I I I /i('-{

Therefore u* minimizes max", I J(u, v). This completes the proof.

4. NECESSARY AND SUFFICIENT CONDITIONS

We continue to adopt thc notation employed in Section 2. For
fE C( X, Y), we define the uniform norm ofj by

lUll = max II /(x)\I,
\-f:.\

and endow the linear space (,(X, Y) with the uniform topology.
It is easy to see that II f(x) - F(x) II is a jointly continuous function of the

two variables f; x and convex in l i.e.,

IIU1j+(I-O)g)(x)-F(x)II::(1i lIf(x)-F(x)11 +(I-li)11 g(x)-F(x)11

for all f; g E C(X, Y), X E X, and e, 0::( (}::( 1. Hence, if A c C(X, Y) is a
finite-dimensional subspace, we can apply Corollary 3.3 and obtain the
following necessary and sufficient condition of best approximation.

THEOREM 4.1. Let A he an n-dimensional suhspace oj (,(X, Y) and
FE C(X, Y). Then!," E A is a hest uniflJrm approximation 10 F it and only if
there exist A.}*, ... , A.: > 0,2::7= 1 ,1,;* = 1, and k distinct elements x~, ... , x: of X,
where I ::( k ::( n + 1, satisfying

(i)

(ii)
fEA.

II f*(x1) - F(x;*) II = 11'/* - FII, i = 1, .... k;

L7~1 ,1,;* Ilf(x;*)-F(x;*)11 ~L7~1 ,1,;* Ilf*(x,*)-F(x;*)11 for all
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Prool Let f* bc a best approximation and let U =
(fE A I III f* -f 111:( I). It is evident that f* mInImIzes max'E.t
Ilf(xl-F(xlil over U, and U is a compact subset of A because it is boun
ded and closed in a finite-dimensional space A. Applying Corollary 3.3
yields the existence of i'l ,..., A;" ) ? 0, L;'~ i),; = I, and {x') ,..., x;, + I } eX
such that the following two relations hold:

fl -+ 1 n -+ 1

I I,; II f*(·t;l - F(.t;lll? I A, II f*(x,l - F(x,lll (4.1 l
i--,,-l i- 1

for all (All + I' '\'II+ll EXII+I={UIIII' '\'lItllIXII+I=(A1""')'II+ll, X"II=

(xl,···,XII + I ), L;,:i )'i= I, )'i?O, XiEX(i= I, ... ,n+ I)};

1/+1 II t 1

i= I i -,-I

for all fE U. Let us denotc by), 1* , ... , At the nonzero clements within
)"1"'" )';'1 I and by X(, ... , xi the corresponding elements within x;, ... , x;, I I

of X. The assertion (i) follows from (4.1) which means, for i = I, ... , k,

II f*(·\'fl ~ F(x,*)11 = max II f*(x) - F(x)11 = III f* ~ Fill·
\C ,\

On the other hand, it follows from (4.2) that

k k

I i,* II f(xn - F(x,* )11 ? I A,* II f*(x ,*) - F(.xf III
1= I , I

holds for all fE U. Since the left-hand side is a convex function off and has
a local minimum atf*,f* realizes a global minimum by a property of con
vex functions. Thus (ii) follows. Conversely, suppose that (i) and (ii) hold.
These two conditions yicld

k

suP. inf L A, II f(xJ - F(x,jll
(/k,.r:k) E Xk lE A i = I

k

? I ).,* II f*(xn - F(xnll = III f* - Fill,
i--= I

wherc Xk is similarly defined as the set XII t I' The left-hand side of the last
relation is equal to or less than

k

inf .max_ I Ai III(xi)-F(xJII = inf max Ilf(x)~F(x)ll.
Ie A (~·k,·\),) E XI-.. i = I f E::- A x E- X

Therefore f* is a best approximation. The proof is completcd.
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If Y is a Hilbert space with inner product <,), then condition (ii) of
Theorem 4.1 can be replaced by another form.

COROLLAR Y 4.1. f* E A is a hest uniform approximation to F if and onlr
if there exisl i.r .... i.1, * > O. L;' I i.,* = 1. and k distinci elements
_y~ •...• x: E X. \rhere 1:( k:( n + I, satis/ring condition (i) of Theorem 4.1 and

(iii)
k

I )..{* <f*(x,*) - F(x,*), p(x;*) = 0
, I

for all pEA.

Proot: Condition (ii) of Thcorem 4.1 holds if and only if the following
inequality holds for all pEA and all real numbers I:

I,

I*(yn+lp(\n-F(x,*) ~ I i} III*(xn-F(xnll· (4.3)
, I

This means that thc left-hand side is a convex function of t and has a
global minimum at t = O. By differentiating it with respect to t at t = 0, it
follows that (iii) is a necessary and sufficient condition for (4.3) to hold for
all pEA and I. For we have. for \" : E Y and real I,

1+1:1 III I' 111+t: 2-1\'lim ------= 1m -------
f ,\I f ,() I( Ill' + I: II + I y II )

<I, : >
.1'1 • if\' -# O.

This completes the proof.
The next corollary states that f* is a best approximation on X if and

only if it also is on some finite set of X,

COROLLAR Y 4.2. Lei A he (Ill n-dimensional suhspace of C( X, Y) and
FE C( X, n. Then 1* is a hest unifimll approximation to F if and only if
there nist I elemenls : ~ ..... : / E X, where 1:( 1:( n + 1, jiJr Irhich f* satisfies

(i') ,II I*(.:n - F(:nll = Ii I* - F , i = I, ... , I;

(ii') max Ii I(.:n-- F(:nll ~ max I I*(:n - F(:nil
I , I I I I

for allIE A.

Proot: The proof is an easy application of Theorem 4.1, hence we omit
it.

As an example of applications of the above results, we take C( X, Y) to
be complex-valued continuous functions on a compact subset of the com
plex plane. Let us take the subspace A to be the set of all complex
polynomials of degrees at most n. It is easy to see that Corollary 4.1 implies
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Characterization Theorem [1, Chap. 3] and that Corollary 4.2 corresponds
to Theorem C (Skeleton Theorem) of [6].

5. THE HAAR CONDITIOl\J

In this section we introduce a condition under which the numbers k, I
appearing in Theorem 4.1 and its corollaries are equal to exactly n + I. The
n-dimensional subspace A c C( X. Y) is said to be a Haar subspace if for
any n distinct elements :x I ..... r" : c .r and for any : 1'1 ..... 1''' : c Y. there
exists a unique fE A such that f(x,) = 1'" i = 1..... n. When C( X, Y) is
C[a, 17]. this is equivalent to saying that A satisfies the Haar condition [5.
p. 91 ].

THEOREM 5.1. Lei X he a cO/llpacl Hausdor!F space Ihal conloins more
Ihan n poinls and A an n-di/llensional Hoar .Iuhspace ot C(x' Yl. Lei
FE C( X. Y) )l'ilh FE A. f* E A is a he.11 uni/rir/II approxi/llalion 10 F it and
()n!r it Ihere exisl ;, ~ .... , ;,,;, I > o. I;' .i 1.,* = 1. and n + 1 dislincl cle/llenls
x~ ..... r~, I EX salilIl'ing

(il f*(x j*) - F(x,* )1' = III f* - FI!. i=I ..... n+1:

1/-- J /I -t 1

(ii) I ;'j* IfCr,*)-Hrn ~ I ;} Ilf*(x,*/-F(xn'l
j I , I

or if and on!r it Ihcre exisl n + I dislincl cle/llenls x t .... x~ tiE X salis(l'ing
(i) and

(ii'l max I,/(x,*)-F(x,*ll"? max J*(x,*)-F(x,*)i l

I I /I + I I I /I! 1

frJr all fE A. Furlhermore. it the normed linear space Y is stricllv convex,
there exists a unique hest approximalio!l.

Proot: If the numbers k or I in Theorem 4.1 or Corollary 4.2 are less
than n + 1. we can choose an lEA such that

f(xn = F(xn(i = I,.... k, k ~ n), or I(:;/) = F(::/)(j = 1, .... I, I ~ n).

It follows from (ii) of Theorem 4.1 that

k k

0= I ;} III(xn-F(r,*)rl"? I i,* 'If*(x,*)-F(x,*)!1
j I , I
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and from (ii') of Corollary 4.2 that

0= max Ilf(.:::,*)··F(·:"t)II?' max ilf*(.:::n F(.:::nll·
I ! Ii!

The right-hand sides of these inequalities are equal to f*- Flil > O. since
Fe A. This is a contradiction. Hence we have k = 1=11 + 1. Along the same
argument of [2. p. 143 J. the uniqueness follows from the definitions of
strict convexity [2. p. 141; or 5, p. 106J and Haar subspaces. This com
pletes the proof.
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